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Abstract. The Earth’s oceans are one of the largest sinks in the Earth system for anthropogenic CO2 emissions, acting as a 

negative feedback on climate change. Earth system models predict, though, that climate change will lead to a weakening ocean 10 

carbon uptake rate as warm water holds less dissolved CO2 and biological productivity declines. However, most Earth system 

models do not incorporate the impact of warming on bacterial remineralisation and rely on simplified representations of 

plankton ecology that do not resolve the potential impact of climate change on ecosystem structure or elemental stoichiometry. 

Here we use a recently-developed extension of the cGEnIE Earth system model (ecoGEnIE) featuring a trait-based scheme for 

plankton ecology (ECOGEM), and also incorporate cGEnIE's temperature-dependent remineralisation (TDR) scheme. This 15 

enables evaluation of the impact of both ecological dynamics and temperature-dependent remineralisation on the soft-tissue 

biological pump in response to climate change. We find that including TDR strengthens the biological pump relative to default 

runs due to increased nutrient recycling, while ECOGEM weakens the biological pump by enabling a shift to smaller plankton 

classes. However, interactions with concurrent ocean acidification cause opposite sign responses for the carbon sink in both 

cases: TDR leads to a smaller sink relative to default runs whereas ECOGEM leads to a larger sink. Combining TDR and 20 

ECOGEM results in a net strengthening of the biological pump and a small net reduction in carbon sink relative to default. 

These results clearly illustrate the substantial degree to which ecological dynamics and biodiversity modulate the strength of 

climate-biosphere feedbacks, and demonstrate that Earth system models need to incorporate more ecological complexity in 

order to resolve carbon sink weakening. 

1. Introduction 25 

Oceans absorb about a quarter of anthropogenic carbon dioxide emissions, drawing down around 2-3 GtCyr-1 in recent decades 

(Ciais et al., 2013; Friedlingstein et al., 2019; Gruber et al., 2019). The mechanisms are well understood: solubility (dissolution) 

and biological (soft tissue and carbonate) pumps gradually transfer carbon to the deep ocean where it remains on timescales 

of several centuries to millennia (Broecker and Peng, 1982). However, increasing ocean temperature as a result of global 

warming could potentially lead to a weakening of this ocean carbon sink (Arora et al., 2013; Ciais et al., 2013). The global 30 
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carbon sink uptake rate was observed to decline by ~0.91%yr-1 between 1959 and 2012, of which approximately 40% is 

estimated to be due to sink feedbacks with the oceans playing a large role (Raupach et al., 2014). The combined effect of future 

feedbacks on both land and ocean carbon sinks reduce the RCP4p5-compatible anthropogenic carbon budget by ~157 ± 76 

GtC (Ciais et al., 2013). 

 35 

This sink weakening might therefore act as a positive feedback on anthropogenic warming (Steffen et al., 2018). However, 

many of the Earth system models (ESMs) used to make these carbon sink projections do not incorporate sufficient ecological 

complexity to fully resolve these feedbacks, including for the ocean the impact of both warming and acidification on metabolic 

dynamics, ecosystem structure, and changing nutrient stoichiometry (Ciais et al., 2013). Of the ten ESMs used for carbon sink 

projections in IPCC AR5, only one resolves the impact of warming on organic carbon remineralisation, three resolve different 40 

plankton sizes, and three resolve changing nutrient usage ratios (discussed in Background below), all of which critically 

influence the biological pump in a warming ocean. 

 

In this study we investigate changes in the biological pump in response to climate change and ocean acidification using 

ecoGEnIE, an ESM of intermediate complexity (EMIC) with more complex biogeochemistry and ecosystem dynamics than 45 

present in most CMIP5 ESMs. The ecoGEnIE model allows temperature-dependent remineralisation (TDR), greater 

biodiversity via size trait-based plankton ecology, and flexible elemental stoichiometry. This combination allows the impact 

of metabolic and ecological dynamics on the biological pump and the ocean carbon sink in response to climate change to 

emerge, while the choice of an EMIC makes such additional complexity computationally tractable. We simulate a suite of 

historical and future climate change scenarios and assess the impact on the ocean carbon sink of replacing the default Fixed 50 

Profile Remineralisation (FPR) parameterisation with the TDR scheme and/or replacing the original NPZD-based 

biogeochemistry module with ecoGEnIE’s new trait-based plankton ecology scheme. 

2. Background 

The primary driver of a weakening ocean carbon sink is the reduced dissolution capacity of warmer water (i.e. a weaker 

solubility pump), but a reduction in the efficacy of the biological pump due to an increase in marine bacterial respiration has 55 

also been suggested as an important factor in past warm episodes (Boscolo-Galazzo et al., 2018; John et al., 2014a; Olivarez 

Lyle and Lyle, 2006). The biological pump describes the fixation and export of carbon from the surface to deep ocean by 

biological activity (Figure 1). The formation and export of calcium carbonate shells (Particulate Inorganic Carbon; PIC) also 

forms part of the biological pump, but hereafter we focus on the soft-tissue biological pump as it is the dominant driver of 

surface carbon export (Dunne et al., 2007). Despite this, the ecological dynamics affecting the soft-tissue pump has had less 60 

attention in plankton model development than resolving calcifier and silicifier plankton shells (Ward et al., 2018). 
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[Figure 1] 

 

After organic carbon is fixed in the surface euphotic layer by phytoplankton and some is consumed by zooplankton, Particulate 65 

Organic Carbon (POC) begins to be remineralised by detritivorous bacteria as it falls through the water column as POC rain. 

Most POC is remineralised near the surface layer where the nutrients released are rapidly recycled into ‘regenerated’ 

production (Dugdale and Goering, 1967), but up to 4-12 GtCy-1 of POC reaches the deep ocean where it becomes part of the 

long-term carbon sink on centennial-to-millennial timescales (Ciais et al., 2013; Dunne et al., 2007; Henson et al., 2011, 2012). 

This simplified representation of plankton ecology forms the basis of many marine biogeochemical models, such as the one-70 

size fixed-trait phyto- and zooplankton classes in the common NPZD (Nutrient-Phytoplankton-Zooplankton-Detritus) scheme 

(Kwiatkowski et al., 2014). This approach misses many important biogeochemical processes though, prompting the 

development of ‘dynamic green ocean models’ which introduce multiple Plankton Functional Types (PFTs) with differentiated 

biogeochemical roles (Aumont et al., 2003; Quere et al., 2005). However, this class of plankton model is limited by a profusion 

of poorly constrained parameters, taxonomic overspecificity, and still-limited biodiversity (Anderson, 2005; Boscolo-Galazzo 75 

et al., 2018; Friedrichs et al., 2007; Shimoda and Arhonditsis, 2016; Ward et al., 2018). 

 

Critically, both NPZD and dynamic green ocean models also fail to fully account for allometric effects in biogeochemistry, 

despite cell size distribution and elemental stoichiometry being the dominant traits controlling plankton ecosystem function 

and total production (Finkel et al., 2010; Guidi et al., 2009) and the fraction of large phytoplankton projected to increase with 80 

nutrient availability and decrease with warming (Mousing et al., 2014). Trait-based plankton models have been proposed, 

based on simulating generic ecosystem rules using key functional traits such as size rather than specific taxonomic identity, 

allowing ecosystem structure, biodiversity, and biogeography to emerge without being parameterised (Bruggeman and 

Kooijman, 2007; Follows et al., 2007; Harfoot et al., 2014; McGill et al., 2006). These models still do not enable better 

understanding of Earth system feedbacks though because they do not capture biogeochemical and large-scale physical 85 

dynamics. 

 

Metabolic processes are also temperature-dependent, and so ocean temperature partly determines many marine biogeochemical 

patterns (Hoppe et al., 2002; Laws et al., 2000; Regaudie-De-Gioux and Duarte, 2012). For every 10oC increase in temperature, 

gross primary production in any location is expected to increase by up to 100% (represented by a Q10 factor of 1-2), while 90 

average community respiration is expected to increase by between 100 and 200% (Q10 = 2-3) (Bendtsen et al., 2015; Boscolo-

Galazzo et al., 2018; Eppley, 1972; Pomeroy and Wiebe, 2001; Regaudie-de-Gioux and Duarte, 2012; Sarmento et al., 2010). 

If warming-induced increases in respiration rates rise faster than production rates, organic matter will be remineralised more 

quickly, raising the remineralisation depth (the point at which most POC is remineralised) higher up in the water column 

(Boscolo-Galazzo et al., 2018; John et al., 2014a). One might expect this to reduce carbon export overall as less carbon makes 95 

it out of the surface ocean, but increased remineralisation also allows more nutrients to be recycled back into the surface, 
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potentially resulting in more regenerated production (Segschneider and Bendtsen, 2013; Taucher and Oschlies, 2011). Even 

only a small shift in the remineralisation depth has a significant potential impact on atmospheric CO2, with a global deepening 

of 24m reducing CO2 by 10-27 ppm in one model (Kwon et al., 2009), and so can potentially act as a climate feedback 

mechanism. 100 

 

Other processes that affect the biological pump and remineralisation will also be impacted by climate change. Ocean 

stratification is projected to increase, as surface warming increases the temperature gradient (Ciais et al., 2013; Riebesell et 

al., 2009). This reduces the nutrient flux from deep to surface waters, potentially leading to an expansion of low-nutrient 

oligotrophic zones (hereafter referred to as ‘oligotrophication’) in subpolar surface waters (Bopp et al., 2005; Sarmiento et al., 105 

2004). Oligotrophication is normally assumed to lead to lower overall productivity, but there is also evidence that warming 

will not substantially affect productivity in existing oligotrophic regions (Richardson and Bendtsen, 2017) and that the depth 

rather than intensity of stratification determines productivity (Richardson and Bendtsen, 2019). The reduction in nutrient 

supply may also favour smaller plankton that can better cope with warmer and oligotrophic conditions, resulting in a shift in 

ecosystem dynamics and function (Beaugrand et al., 2010; Bopp et al., 2005; Finkel et al., 2010). Reduced mixing rates also 110 

result in ocean interior deoxygenation, leading to an expansion of oxygen minimum zones, reduced nitrogen availability, and 

increased phosphate release from affected sediments (Ciais et al., 2013; Keeling et al., 2010; Stramma et al., 2008).  

 

The organic biological pump may also be affected by ocean acidification through shifting ecosystem composition, altered 

nutrient availability and stoichiometry (Ciais et al., 2013; Nagelkerken and Connell, 2015; Riebesell et al., 2009; Tagliabue et 115 

al., 2011), and reduced particle ballasting – the hypothesised process by which POC sticks to denser falling PIC and so 

increases POC export (Armstrong et al., 2001; Klaas and Archer, 2002). Furthermore, the human-driven loss of organisms 

higher up the food chain as a result of overharvesting and habitat degradation has a considerable yet poorly quantified effect 

on the biological pump (Pershing et al., 2010). Many of these factors influence and/or are influenced by both the magnitude 

of primary production and the remineralisation depth.  120 

 

[Table 1] 

 

Despite these known influences on the biological pump, many of the CMIP5 Earth system models (ESMs) used for the IPCC 

AR5’s ocean carbon sink projections did not incorporate many or any of these biogeochemical processes (Ciais et al., 2013; 125 

Schwinger et al., 2014). One study (Segschneider and Bendtsen, 2013) quantified the impact of including TDR, modifying the 

CMIP5 model MPI-ESM and its marine biogeochemistry model HAMOCC5.2, and projected an ~18 GtC reduction in ocean 

carbon uptake by 2100 under high emission scenario RCP8p5. However, only one out of ten CMIP5 ESMs featured non-fixed 

POC remineralisation profiles by enabling TDR (CanESM2) (Table 1), with most instead prescribing a fixed attenuating 

remineralisation profile (Bendtsen et al., 2015; Dunne et al., 2007; Martin et al., 1987). Additionally, NPZD-type models 130 
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cannot fully resolve the potential impact of climate change or ocean acidification on ecosystem structure, biodiversity, and 

plankton size shifts. Only four of the ten CMIP5 ESMs featured multiple PFTs with different ecosystem functions beyond a 

simple NPZD scheme. Of these, only three account for plankton size in some way, and only three featured at least partially 

flexible stoichiometry (e.g. nutrient quotas and optimal allocation) that allow potential changes in nutrient utilisation in 

response to changing environmental conditions to be resolved (Kwiatkowski et al., 2018; Moreno and Martiny, 2018). 135 

Investigating changes in the biological pump in response to the physical and chemical perturbations of climate change and 

ocean acidification therefore requires an ESM with more complex biogeochemistry and ecosystem dynamics than present in 

the CMIP5 ESMs. 

3. Methods 

3.1. The ecoGEnIE model 140 

ecoGEnIE is an extension of cGEnIE – the carbon-centric Grid Enabled Integrated Earth system model, an EMIC featuring 

modules for 3D ocean circulation, 2D energy-moisture balance atmosphere, simplified thermo-dynamic sea ice, optional ocean 

sediments, and a comprehensive ocean biogeochemistry module with phosphorus (in the form of phosphate, PO4) as the main 

limiting nutrient (Ridgwell et al., 2007; Ridgwell and Schmidt, 2010). cGEnIE has been used in many previous studies of 

climate-carbon cycle interactions in both modern (Tagliabue et al., 2016) and palaeo applications (Gibbs et al., 2016; John et 145 

al., 2014a; Meyer et al., 2016; Monteiro et al., 2012; Norris et al., 2013; Ridgwell and Schmidt, 2010). The default cGEnIE 

configuration uses a fixed remineralisation profile similar to the Martin curve (Martin et al., 1987; Ridgwell et al., 2007), but 

includes an optional temperature-dependent remineralisation scheme which has previously been used to explore the biological 

pump in warm palaeo oceans (John et al., 2014b). An updated tuning of this scheme which also couples TDR with temperature-

dependent export production is currently being developed (Crichton et al., 2020), but was not available at the time of this 150 

study. EMICs such as cGEnIE have lower spatiotemporal resolution than more comprehensive ESMs based on atmosphere-

ocean general circulation models, but they are also less computationally expensive and thus well-suited for investigating more 

complex biogeochemical dynamics and performing efficient simulations of longer timescales or multiple scenarios (Claussen 

et al., 2002; Ward et al., 2018).  

 155 

The current cGEnIE version (cGEnIE.muffin) has been extended to ecoGEnIE by incorporating a new scheme for plankton 

ecology (ECOGEM), replacing cGEnIE’s implicit, flux-based parameterisation with an explicitly resolved and temperature-

sensitive trait-based ecosystem module (Ward et al., 2018). In this case, size is the dominant trait controlling plankton 

biogeochemical function and response to warming (Finkel et al., 2010; Mousing et al., 2014), and so each PFT (here only 

phytoplankton and zooplankton, but further classes such as calcifiers and silicifiers will be available in future) is further split 160 
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into 8 size classes ranging from 0.6μm to 1900μm. This allows a better representation of biodiversity within the model, with 

the ecosystem capable of shifting to a different structure in response to environmental forcing. ECOGEM includes flexible 

stoichiometry rather than being fixed to the canonical Redfield Ratio (of C:N:P = 106:16:1 or similar (Martiny et al., 2014; 

Redfield, 1934)), allowing dynamic usage of nutrients in response to warming and nutrient availability to also be resolved 

(Boscolo-Galazzo et al., 2018; Martiny et al., 2016; Moreno and Martiny, 2018). Dissolved Organic Matter (DOM) production 165 

is also explicit in ECOGEM and so allows a variable POM/DOM ratio, variations in which may have a significant impact on 

primary production in oligotrophic regions (Richardson and Bendtsen, 2017). However, cGEnIE/ecoGEnIE has relatively 

coarse ocean layer resolution (16 layers of variable thickness), and so is not able to sufficiently resolve the dynamics that 

potentially link stratification and deep chlorophyll maxima in oligotrophic regions (Richardson and Bendtsen, 2017, 2019). 

ecoGEnIE has not yet been fully recalibrated to the modern ocean and does not perform quite as well against observational 170 

data as cGEnIE, but the results are still broadly similar (Ward et al., 2018) and are sufficient for analysis of the global biological 

pump response. 

3.2. Experimental setup 

We assess the differing impacts of replacing cGEnIE’s Fixed Profile Remineralisation (FPR) parameterisation with its 

Temperature-Dependent Remineralisation (TDR) scheme (John et al., 2014b) and replacing cGEnIE’s original NPZD-based 175 

biogeochemistry BIOGEM module (BIO) with ecoGEnIE’s trait-based ECOGEM module (ECO) (Ward et al., 2018). We test 

each new element both separately and in combination, analysing four cGEnIE/ecoGEnIE configurations: 

 

• BIO+FPR is cGEnIE with the default NPZD biogeochemistry module (BIO) and the default Fixed Profile 

Remineralisation scheme (FPR) 180 

• BIO+TDR is cGEnIE with the default NPZD biogeochemistry module (BIO) and the alternative Temperature-

Dependent Remineralisation scheme (TDR) 

• ECO+FPR is ecoGEnIE, incorporating the trait-based ECOGEM module (ECO), and the default Fixed Profile 

Remineralisation scheme (FPR) 

• ECO+TDR is ecoGEnIE (ECO) and the alternative Temperature-Dependent Remineralisation scheme (TDR) 185 

 

Each configuration is calibrated to result in the same global biological pump strength (POC export of ~7.5 GtCy-1 and PIC 

export of ~1 GtCy-1) and similar global mean total Dissolved Inorganic Carbon (DIC) and Alkalinity (ALK) and surface DIC 

speciation relative to the cGEnIE/ecoGEnIE default configurations and data (see Supplementary Table S1 & Figures S1-18). 
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The main difference between them is a higher POC sedimentation rate in the ecoGEnIE configurations, but as POC rain in 190 

non-sediment enabled configurations of cGEnIE is returned as deep ocean DIC, this is acceptable on shorter sub-overturning 

timescales. Each model configuration is spun-up for 10,000 years and restarted at 0 CE (10000 HE), and then forced from 

1765 CE with combined historical and future CMIP5 RCP total CO2 emission scenarios (3PD, 4p5, 6p0, and 8p5, 

corresponding to low, moderate, high, and very high emission scenarios respectively) extended through to 2500 CE 

(Meinshausen et al., 2011). We use the global POC export flux (GtCyr-1) from the surface layer (fixed in cGEnIE/ecoGEnIE 195 

as the top 80.8m of the ocean) as our measure of biological pump strength and compare cumulative changes between the years 

2000 and 2100 CE, and also quantify cumulative changes in the ocean carbon sink for each configuration through the air-to-

sea CO2 flux. We calculate cumulative changes in biological pump and ocean carbon sink capacity for the policy-relevant 

timescale of the 21st Century CE (Table 2), but the biological pump results are shown up to 2500 CE (Figure 2). 

4. Results 200 

4.1. Biological Pump Strength 

[Figure 2] 

 

Our results show that the biological pump weakens under all scenarios and configurations, but adding TDR and trait-based 

plankton ecology has strong and opposite impacts on relative biological pump strength. Under the default cGEnIE 205 

configuration (BIO+FPR) anthropogenic climate change results in an overall weakening of the global biological pump, with 

global POC flux falling ~6.1% below preindustrial by 2100 under RCP4p5 (Figure 2; Table 2). In the model this is primarily 

driven by stratification resulting in reduced surface nutrient concentrations and decreased primary production in high-

productivity subpolar waters (Figure 3) in line with previous model results (Bopp et al., 2005; Ciais et al., 2013; Crichton et 

al., 2020; Riebesell et al., 2009; Sarmiento et al., 2004). In contrast, there is an increase in production in high-latitude waters, 210 

where mixing is already so deep that stratification and decreased mixing actually increases productivity by confining 

phytoplankton within the euphotic zone (matching theoretical expectations; Riebesell et al., 2009). 

 

[Figure 3] 

 215 

Adding TDR (BIO+TDR) leads to a substantially different result than the default cGEnIE configuration, with a far smaller 

biological pump weakening under RCP4p5 of only ~-0.3% by 2100, and eventually a net strengthening after 2100 (Figure 2). 

This occurs in the model because adding TDR results in an initial decrease in biological pump strength as more POC is 

remineralised with warming, but this also leads to a shallower remineralisation depth and an increase in nutrient recycling and 
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regenerated production. While a warming-induced shoaling of the remineralisation depth has been modelled to reduce POC 220 

export (Kwon et al., 2009), we find that a secondary effect is to increase PO4 concentrations just below the mixed layer from 

remineralisation that would otherwise have occurred deeper in intermediate waters (Supporting Figure S19). This in turn leads 

to increased PO4 input to the surface layer through mixing, which is sufficient to lead to an elevated baseline in new production 

and POC export in warmer subpolar waters (Figure 4a) and stimulate a relative increase in POC export with further warming. 

This result is consistent with a previous TDR-enabled EMIC, which found that including TDR resulted in increased Net 225 

Primary Production and a marginally smaller decrease in POC export under RCP8p5 (Taucher and Oschlies, 2011). A recent 

update to cGEnIE’s TDR scheme (Crichton et al., 2020) also found a similar result, with historical warming resulting in a 

~0.3% decline in POC export with TDR activated versus ~2.9% without. 

 

[Figure 4] 230 

 

Activating ecoGEnIE (ECO+FPR) instead of TDR results in a greater weakening of the biological pump than in BIO+FPR, 

with global POC flux falling by ~10.1% by 2100 under RCP4p5 (Figure 2). Adding ECOGEM allows an overall decrease in 

average plankton size in response to climate change, as warming and stratification leads to oligotrophication in subpolar waters 

which favours smaller plankton size classes, and is in line with previous observational and modelling studies (Finkel et al., 235 

2010; Riebesell et al., 2009). The shift to smaller plankton classes lower in the food chain in warmer regions increases the 

rapidity of carbon cycling within the surface ocean, reduces the productivity and biomass of the whole ecosystem, and so 

decreases overall POC export (Figure 4b). Adding both trait-based plankton ecology and TDR (ECO+TDR) produces a 

complex result, with the weakening effect of adding ECO on the biological pump partly counteracting the strengthening effect 

of adding TDR. The overall effect is a moderate net weakening of the biological pump by ~7.8% by 2100 (Figure 2), as 240 

decreasing plankton size and POC export in subpolar waters due to adding ECO reduces the capacity for nutrient recycling to 

increase as a result of adding TDR (Figure 4c). The combined effect of ECO+TDR relative to BIO+FPR in this model is 

therefore an additional ~1.9% weakening of the biological pump relative to pre-industrial under RCP4p5 (Figure 5), resulting 

in ~8.2 GtC less POC being exported by the biological pump in this model during the 21st Century. In all configurations and 

scenarios the changes in the biological pump continue past 2100, and in many cases only begin to stabilise after several hundred 245 

years (Figure 2). 

 

[Figure 5] 
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4.2. Ocean Carbon Sink Capacity 

It has sometimes been implied in previous discussions of empirical and model results that a decrease in biological pump 250 

strength directly leads to a corresponding decrease in the ocean carbon sink capacity, as less POC is exported from the surface 

to deep ocean and so more CO2 remains in surface waters and therefore the atmosphere (Boscolo-Galazzo et al., 2018; John et 

al., 2014a; Olivarez Lyle and Lyle, 2006; Steffen et al., 2018). However, reduced POC export affects many other processes, 

which results in a nonlinear relation between biological pump strength and the ocean carbon sink capacity that can lead to 

counter-intuitive outcomes. 255 

 

[Table 2] 

 

In our simulations, the relative strengthening of the biological pump when TDR is included actually leads to a net decrease in 

the ocean carbon sink capacity during the 21st century (Table 2). Conversely, the relative weakening of the biological pump 260 

with ECOGEM activated instead (ECO+FPR) is associated with a net increase in the ocean carbon sink capacity. Combining 

both ECOGEM and TDR (ECO+TDR) results in a smaller overall relative weakening of the biological pump compared to 

default, and a marginal net decrease in the ocean carbon sink capacity of ~0.4 GtC (~2.4 GtC under RCP8p5) over the 21st 

Century. Including trait-based ecology using size classes largely but not entirely offsets the impact on the ocean carbon sink 

of also including TDR in this model. The model thus suggests that ecological dynamics increases the resilience of plankton 265 

ecosystem functioning against the pressures of climate change. 

 

A decrease in POC export does not automatically result in a decrease in the ocean carbon sink capacity in this model as a result 

of interactions with carbonate chemistry and ocean acidification. Adding TDR results in greater production of both POC and 

PIC in sub-polar regions. Along with increased respiration rates this results in an initial net decrease in surface DIC and ALK, 270 

which through DIC speciation leads to a decrease in the concentration of dissolved carbonate ([CO3]), an increase in the 

concentration of surface dissolved CO2 ([CO2]), and decreased pH and carbonate saturation state (Ω) (as theoretically described 

by Zeebe and Wolf-Gladrow, 2001). This increases the partial pressure of CO2 in surface waters (pCO2), therefore reducing 

the capacity for additional CO2 to dissolve from the atmosphere into the ocean. This effect on the air-to-sea CO2 flux gradually 

limits the total DIC content for the whole ocean and therefore the ocean carbon sink as a whole. Ocean acidification also 275 

concurrently increases surface pCO2 and decreases Ω, and so adding TDR results in a synergistic interaction with ocean 

acidification. Conversely, adding ECOGEM reduces total ecosystem POC/PIC production, leading to higher surface DIC and 

ALK, increased surface [CO3] and Ω, decreased surface [CO2] and pCO2, and therefore increased air-to-sea CO2 flux and total 

ocean DIC in the long-term. ECOGEM and the resultant oligotrophication-induced plankton size shift therefore slightly 

counters the ocean acidification trend. 280 
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5. Discussion 

These initial results clearly illustrate the importance of incorporating multiple dimensions of ecological complexity within 

Earth system models in order to capture the impact of nonlinear climate-biosphere feedbacks, biodiversity, and ecological 

resilience on the future dynamics of carbon sinks. Our ecoGEnIE experiments simulate a modest decline in the ocean carbon 

sink capacity of around ~5 GtC (~0.05 GtCy-1) during the 21st Century under an RCP8p5 scenario when accounting for TDR, 285 

compared to a previous estimate of ~18 GtC (~0.18 GtCy-1) using a much simpler NPZD-based ecosystem representation 

(Segschneider and Bendtsen, 2013) and the 2018 ocean carbon sink uptake rate of 2.6±0.6 GtCy-1 (Friedlingstein et al., 2019). 

This decline is partially countered when greater ecological complexity is introduced as well, with a shift to smaller plankton 

classes in response to oligotrophication leading to an ocean carbon sink reduction of only ~2.4 GtC. Other processes that are 

not resolved in this configuration of ecoGEnIE could also substantially affect the biological pump though, such as ballasting, 290 

calcifier-silicifier trade-offs, and deep chlorophyll maxima (discussed more fully below), and further work is required to assess 

their impact on our estimates. 

 

Few of the ESMs used in CMIP5 sufficiently resolve marine ecology, instead relying on simple plankton ecosystems with 

minimal or non-existent ecological and metabolic dynamics (Table 1). This reduces computational expense and so allows 295 

higher resolution of important physical processes, but comes at the price of poorly resolving known biogeochemical and 

ecological feedbacks that could substantially affect carbon partitioning (Anderson, 2005; Ward et al., 2018). To date, gains in 

computational power have largely been allocated to improved resolution and physical process representation. This study 

suggests that it is timely for the research community to debate again where future gains should be focused, in order to enable 

ESMs to include more complex marine biogeochemical modules without compromising the high resolution representation of 300 

physical processes. This would also allow more accurate representation of fine-scale biogeochemical processes such as the 

interaction of stratification, the nutricline, and deep chlorophyll maxima in oligotrophic regions (Richardson and Bendtsen, 

2017, 2019), which has not been possible in this study. EMICs with lower physical resolution can more readily incorporate 

ecological complexity though, and remain a crucial tool for further exploring these feedbacks in the interim. 

 305 

In this study we focus on the dominant soft-tissue biological pump, but the variable response of plankton classes with different 

shell types to climate change and ocean acidification will also have an impact on the biological pump. For instance, silicifiers 

with opal-based shells such as diatoms thrive in nutrient-rich waters. Segschneider and Bendtsen (2013) found that the 

increased nutrient recycling when TDR was introduced in their model initially drives an increase in diatom production and 

opal export in response to climate change. This eventually leads to silicate-depleted surface waters and suppressed diatom 310 

production, allowing a subsequent increase in calcifying plankton and PIC export instead. This has the effect of reducing 

surface alkalinity and increasing surface pCO2, which drives a substantial proportion of the large ocean carbon sink reduction 

in their analysis. However, the model of Segschneider and Bendtsen (2013) does not feature trait-based size classes or flexible 
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stoichiometry, which we have shown is critical for determining the soft-tissue biological pump response. In order to fully 

compare our results it will be necessary to repeat our simulations with the silicifier-enabled ECOGEM currently under 315 

development. Together, resolving plankton size classes, TDR, flexible stoichiometry, and separate silicifier and calcifier 

functional types will allow the response of the marine biological pump to climate change to be more fully diagnosed. Further 

development will also allow the potential impact of ballasting to be assessed. Empirical observations have suggested that the 

ballasting effect is weaker than hypothesised (Wilson et al., 2012), making ballasting unlikely to substantially alter our 

findings, but it would likely result in greater surface layer remineralisation in scenarios with reduced PIC production. 320 

6. Conclusions 

The response of the biological pump to future climate change and its role in the ocean carbon sink is critical for projecting 

climate feedbacks, but many of the most influential Earth system models fail to incorporate sufficient metabolic or ecological 

complexity for this to be fully resolved. In this study, we investigate for the first time the impact of integrating both 

temperature-dependent remineralisation, size-based biodiversity, and flexible nutrient usage on the biological pump and ocean 325 

carbon sink in response to climate change. We find that while adding temperature-dependent remineralisation to an Earth 

system model of intermediate complexity (ecoGEnIE) results in a greater weakening of the ocean carbon sink as a result of 

climate change as expected, this actually results from a relative strengthening of the biological pump itself as a result of 

shallower nutrient remineralisation. Conversely, adding trait-based ecosystem dynamics instead results in an even weaker 

biological pump as a result of oligotrophication favouring smaller plankton, and in turn a larger ocean carbon sink. Finally, 330 

combining both of these features results in a smaller relative weakening of the biological pump and a modest reduction in the 

ocean carbon sink capacity. This implies that the biological pump positive feedback on climate change may be larger than 

CMIP5 models project, but is potentially less than some other post-CMIP5 projections. These complex relations require further 

analyses and validation. This study has primarily focused on the allometric aspects of dominant soft-tissue components of the 

biological pump, and the results clearly illustrate the substantial degree to which ecological dynamics and biodiversity 335 

modulate the strength of climate-biosphere feedbacks. Going beyond simple biogeochemical traits and incorporating more 

ecological complexity in Earth system models will allow feedbacks such as the marine biological pump to be more fully 

resolved in future. 
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Figures and Tables 

 

Figure 1: Schematic illustrating the impact of warming on the soft tissue biological pump. On the left-side, under cooler pre-industrial 

conditions the surface layer remains fairly well mixed with the deep ocean (green arrow), returning dissolved nutrients and carbon (DNut & 

DOC) from remineralisation of exported POC (red arrow), while some POC is remineralised above the remineralisation depth (surface red 620 
arrows) partly within the surface layer. On the right-side, warming leads to a shift to dominance by smaller plankton as well as stratification 

leading to less mixing between the shallow and deep ocean, while shoaling of the remineralisation depth leads to greater recycling of nutrients 

and carbon close to the surface layer, combining to result in an overall reduction in POC export and sedimentation.
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Figure 2: cGEnIE/ecoGEnIE simulation results for global POC export flux under different configurations and forcing scenarios. 625 
Results for RCP4p5 (pale blue) and RCP8p5 (dark red) are shown for each of the configurations (BIO+FPR – dotted; BIO+TDR – dot-

dashed; ECO+FPR – dashed; ECO+TDR – solid), and the 21st Century (used for cumulative POC flux and ocean carbon sink capacity 

calculations in Table 2) marked by the vertical dotted lines.  
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Figure 3: cGEnIE POC export maps for BIO+FPR, showing baseline patterns (a) and the change in POC export by 2100 relative to 630 
the 1765 pre-industrial baseline as a result of RCP4p5 (b).  
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Figure 4: cGEnIE/ecoGEnIE POC export maps, showing changes in baseline for BIO+TDR (a), ECO+FPR (b), and ECO+TDR (c) 

relative to the default BIO+FPR configuration (Figure 3).  
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 635 

Figure 5: ecoGEnIE POC export maps for ECO+TDR, showing baseline patterns (a) and the change in POC export by 2100 relative 

to the 1765 pre-industrial baseline as a result of RCP4p5 (b). 

Table 1:  Features critical for resolving biological pump dynamics of CMIP5 ESMs used to simulate ocean carbon sink 

projections in IPCC AR5. Details based on IPCC AR5 WG1 Table 6.11, Table 9.A.1, and cited literature. Note that there are some 

mismatches between number of functional groups reported in the literature and the IPCC description. Highlighted cells indicate the models 640 
with the most (green/darker) or moderately (orange/lighter) comprehensive – but not necessarily sufficient – representation of the relevant 

model feature. 
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* NPZD = Nutrient Phytoplankton Zooplankton Detritus pools; PFTs = Plankton Functional Types (diatoms, coccolithopores, etc.) 

† #T:=No. Total; #P=No. Phytoplankton types; #Z= No. Zooplankton types; [#]= IPCC AR5.1 table 6.11 No. plankton types; [#X]= 

mismatch between cited literature and IPCC AR5.1 Table 6.11 645 
‡ Fixed rate = prescribed remineralisation profile for sinking POC (sometimes split by class); TDR= temperature-dependent remineralisation 

§ Major & minor nutrient cycles present 

| Fixed= set ratio of C:N:P etc. (e.g. Redfield Ratio) in OM; Variable/quota= OM can take up / store differing ratios of nutrient relative to C 

¶ One major limiting nutrient (P or N), co-limitation by both, and/or micronutrients (e.g. Fe) as well 

◊ Silicifiers & calcifiers differentiated (& by parameterisation or by functional classes) 650 
‽ Ballasting (OM sticks to sinking heavy PIC) available as an option 
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Table 2: Simulated changes in cumulative POC export and air-to-sea CO2 flux during the 21st Century under different climate 

change scenarios (CMIP5 RCPs 3PD, 4p5, 6p0, and 8p5), illustrating the relative changes in biological pump strength and ocean 

carbon sink capacity respectively. Colours and shading designate strengthening (green/darker) or weakening (red/lighter) of the biological 

pump and ocean carbon sink relative to the default cGEnIE (the BIO+FPR configuration). 655 

RCP Model 
Configuration 

Biological Pump Strength Ocean Carbon Sink Capacity 

Cumulative ΔPOC 
export 2000-2100 
relative to 
preindustrial rates 
(GtC) 

Cumulative ΔPOC 
export 2000-2100 
relative to default 
cGEnIE (GtC) 

Cumulative Air-to-
Sea CO2 transfer 
2000-2100 (GtC) 

Cumulative Air-to-
Sea CO2 transfer 
2000-2100 relative 
to default cGEnIE 
(GtC) 

3PD 

BIO+FPR -27.76 0 269.3 0 

BIO+TDR -3.92 +23.84 266.6 -2.74 

ECO+FPR -45.52 -17.76 271.4 +2.06 

ECO+TDR -35.63 -7.87 270.2 +0.85 

4p5 

BIO+FPR -32.88 0 387.6 0 

BIO+TDR -6.64 +26.24 384.0 -3.65 

ECO+FPR -51.97 -19.09 388.9 +1.32 

ECO+TDR -41.12 -8.24 387.2 -0.43 

6p0 

BIO+FPR -34.60 0 460.8 0 

BIO+TDR -8.15 +26.45 456.7 -4.08 

ECO+FPR -53.99 -19.39 461.1 +0.38 

ECO+TDR -43.12 -8.52 459.3 -1.48 

8p5 

BIO+FPR -41.23 0 585.5 0 

BIO+TDR -11.54 +29.69 580.3 -5.12 

ECO+FPR -62.92 -21.70 585.4 -0.09 

ECO+TDR -50.64 -9.41 583.1 -2.39 
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